Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells.

نویسندگان

  • Zuxin Zhang
  • Liya Wei
  • Xilin Zou
  • Yongsheng Tao
  • Zhijie Liu
  • Yonglian Zheng
چکیده

BACKGROUND AND AIMS Anaerobic or low oxygen conditions occur when maize plants are submerged or subjected to flooding of the soil. Maize survival under low oxygen conditions is largely dependent on metabolic, physiological and morphological adaptation strategies; the regulation mechanisms of which remain unknown. MicroRNAs (miRNAs) play critical roles in the response to adverse biotic or abiotic stresses at the post-transcriptional level. The aim of this study was to understand submergence-responsive miRNAs and their potential roles in submerged maize roots. METHODS A custom muParaflo microfluidic array containing plant miRNA (miRBase: http://microrna.sanger.ac.uk) probes was used to explore differentially expressed miRNAs. Small RNAs from treated roots were hybridized with the microarray. The targets and their cis-acting elements of small RNA were predicted and analysed by RT-PCR. KEY RESULTS Microarray data revealed that the expression levels of 39 miRNAs from nine maize and some other plant miRNA families were significantly altered (P < 0.01). Four expression profiles were identified across different submergence time-points. The zma-miRNA166, zma-miRNA167, zma-miRNA171 and osa-miRNA396-like were induced in the early phase, and their target genes were predicted to encode important transcription factors, including; HD-ZIP, auxin response factor, SCL and the WRKY domain protein. zma-miR159, ath-miR395-like, ptc-miR474-like and osa-miR528-like were reduced at the early submergence phase and induced after 24 h of submergence. The predicted targets for these miRNAs were involved in carbohydrate and energy metabolism, including starch synthase, invertase, malic enzyme and ATPase. In addition, many of the predicted targets were involved in the elimination of reactive oxygen species and acetaldehyde. Overall, most of the targets of induced miRNAs contained the cis-acting element, which is essential for the anaerobic response or hormone induction. CONCLUSIONS Submergence-responsive miRNAs are involved in the regulation of metabolic, physiological and morphological adaptations of maize roots at the post-transcriptional level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus (Nelumbo nucifera Gaertn)

MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at th...

متن کامل

Differential expression of miRNAs in response to salt stress in maize roots.

BACKGROUND AND AIMS Corn (Zea mays) responds to salt stress via changes in gene expression, metabolism and physiology. This adaptation is achieved through the regulation of gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) have been found to act as key regulating factors of post-transcriptional gene expression. However, little is known about the role of ...

متن کامل

بررسی بیوانفورماتیکی میانکنش بین میکرو RNAها با ژن‌های دخیل در عود مجدد سرطان پستان درمان شده با تاموکسیفن

Background and Objective: Tamoxifen is the most commonly used treatment for the patients with breast cancer called ER +, which prevents the expression of genes that are effective in the growth and proliferation of cancer cells by estrogen. Resistant to Tamoxifen is a major clinical problem in breast cancer treatment. In recent studies, the role of microRNAs in tamoxifen resistance has been rais...

متن کامل

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

Evaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells

Stem cells are a good alternative for regenerative medicine because of their characteristics such as self-renewal and differentiation potential. They are classified into different types of stem cells including embryonic stem cells, induced pluripotent stem cells, multipotent stem cells, and ultimately uni-potent stem cells. Mesenchymal stem cells extracted from adult tissues. Due to the lack of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2008